Beverages (Jun 2024)

Emphasizing the Potential of Attenuated Total Reflectance–Fourier Transform Infrared (ATR-FTIR) Spectroscopy Combined with Chemometrics, for Classification of Greek Grape Marc Spirits

  • Evangelia Anastasia Tsapou,
  • Vassilia J. Sinanoglou,
  • George Ntourtoglou,
  • Elisabeth Koussissi

DOI
https://doi.org/10.3390/beverages10020042
Journal volume & issue
Vol. 10, no. 2
p. 42

Abstract

Read online

Grape marc spirits, such as the Greek tsipouro/tsikoudia, reflect the cultural heritage of winemaking traditions worldwide. This study explored the application of Attenuated Total Reflectance–Fourier Transform Infrared (ATR-FTIR) spectroscopy combined with chemometrics for its potential as a fast classification methodology for spirit characterization. ATR-FTIR spectra from thirty-nine products revealed distinctive bands corresponding to various chemical constituents, such as alcohols, organic acids, water, carbohydrates, and phenols. Principal Component Analysis (PCA) was performed on all acquired ATR-FTIR data and 78.50% of the total variance in the data was explained. Also, partial least squares–discriminant analysis (PLS-DA), used for the classification of products based on their major geographic origin, gave a correct classification of 89.5% for the north and 83.3% for the south of Greece. Classification of the type of distillations used was with 74.36% accuracy. Significant markers were identified through analysis, such as those associated with the O-H bending vibrations of phenols or alcohols, contributing to the discrimination of grape marc spirits from Crete when compared with the other four main geographical origin designations. By combining ATR-FTIR spectroscopy with chemometrics, this research gave insights into the origins and compositional variations of the spirits, providing an opportunity for a quality control assessment tool.

Keywords