Heliyon (Jun 2024)

Identification of PATL1 as a prognostic and immunotherapeutic predictive factor for nasal-type natural killer/T-cell lymphoma and head and neck squamous cell carcinoma

  • Wen Yang,
  • Cong Peng,
  • Zhengyang Li,
  • Wenxiu Yang

Journal volume & issue
Vol. 10, no. 11
p. e32158

Abstract

Read online

This research examines the function of protein associated with topoisomerase II homolog 1 (PATL1) in nasal-type natural killer/T-cell lymphoma (NKTCL) and head and neck squamous cell carcinoma (HNSCC). We analyzed bulk RNA-seq data from NKTCL, nasal polyps, and normal nasal mucosa, identifying 439 differentially expressed genes. Machine learning algorithms highlighted PATL1 as a hub gene. PATL1 exhibited significant upregulation in NKTCL and HNSCC tumor samples in comparison to normal tissues, showing high diagnostic accuracy (AUC = 1.000) for NKTCL. Further analysis of local hospital data identified PATL1 as an independent prognostic risk factor for NKTCL. Data analysis of TCGA and GEO datasets revealed that high PATL1 expression correlated with poorer prognosis in HNSCC patients (p < 0.05). We also constructed a PATL1-based nomogram, which emerged as an independent prognostic predictor for HNSCC after addressing missing values. Additionally, we found a strong correlation between PATL1 and various immune cell infiltrates (e.g., activated.CD4 T cell), and a significant association with the expression of 37 immune checkpoints genes (e.g., CTLA4, PDCD1) and 20 N6-methyladenosine-related genes (e.g., ZC3H13, METTL3) (all p < 0.05). Both TCIA and TIDE algorithms suggested that PATL1 could potentially predict immunotherapy efficacy (p < 0.05). Cellular experiments demonstrated that transfection with a silencing plasmid of PATL1 significantly inhibited the malignant behaviors of SNK6 and FaDu cell lines(p < 0.05). In conclusion, our findings suggest that PATL1 may serve as a valuable prognostic and predictive biomarker in NKTCL and HNSCC, highlighting its significant role in these cancers.

Keywords