Geoscientific Model Development (Feb 2017)
Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI)
- O. Morgenstern,
- M. I. Hegglin,
- E. Rozanov,
- F. M. O'Connor,
- N. L. Abraham,
- H. Akiyoshi,
- A. T. Archibald,
- S. Bekki,
- N. Butchart,
- M. P. Chipperfield,
- M. Deushi,
- S. S. Dhomse,
- R. R. Garcia,
- S. C. Hardiman,
- L. W. Horowitz,
- P. Jöckel,
- B. Josse,
- D. Kinnison,
- M. Lin,
- E. Mancini,
- M. E. Manyin,
- M. Marchand,
- V. Marécal,
- M. Michou,
- L. D. Oman,
- G. Pitari,
- D. A. Plummer,
- L. E. Revell,
- D. Saint-Martin,
- R. Schofield,
- A. Stenke,
- K. Stone,
- K. Sudo,
- T. Y. Tanaka,
- S. Tilmes,
- Y. Yamashita,
- K. Yoshida,
- G. Zeng
Affiliations
- O. Morgenstern
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
- M. I. Hegglin
- Department of Meteorology, University of Reading, Reading, UK
- E. Rozanov
- Physikalisch-Meteorologisches Observatorium Davos – World Radiation Center (PMOD/WRC), Davos, Switzerland
- F. M. O'Connor
- Met Office Hadley Centre (MOHC), Exeter, UK
- N. L. Abraham
- Department of Chemistry, University of Cambridge, Cambridge, UK
- H. Akiyoshi
- National Institute of Environmental Studies (NIES), Tsukuba, Japan
- A. T. Archibald
- Department of Chemistry, University of Cambridge, Cambridge, UK
- S. Bekki
- LATMOS, Institut Pierre Simon Laplace (IPSL), Paris, France
- N. Butchart
- Met Office Hadley Centre (MOHC), Exeter, UK
- M. P. Chipperfield
- School of Earth and Environment, University of Leeds, Leeds, UK
- M. Deushi
- Meteorological Research Institute (MRI), Tsukuba, Japan
- S. S. Dhomse
- School of Earth and Environment, University of Leeds, Leeds, UK
- R. R. Garcia
- National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA
- S. C. Hardiman
- Met Office Hadley Centre (MOHC), Exeter, UK
- L. W. Horowitz
- National Atmospheric and Ocean Administration Geophysical Fluid Dynamics Laboratory (NOAA GFDL), Princeton, New Jersey, USA
- P. Jöckel
- Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
- B. Josse
- CNRM UMR 3589, Météo-France/CNRS, Toulouse, France
- D. Kinnison
- National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA
- M. Lin
- National Atmospheric and Ocean Administration Geophysical Fluid Dynamics Laboratory (NOAA GFDL), Princeton, New Jersey, USA
- E. Mancini
- Department of Physical and Chemical Sciences, Universitá dell'Aquila, L'Aquila, Italy
- M. E. Manyin
- National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC), Greenbelt, Maryland, USA
- M. Marchand
- LATMOS, Institut Pierre Simon Laplace (IPSL), Paris, France
- V. Marécal
- CNRM UMR 3589, Météo-France/CNRS, Toulouse, France
- M. Michou
- CNRM UMR 3589, Météo-France/CNRS, Toulouse, France
- L. D. Oman
- National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC), Greenbelt, Maryland, USA
- G. Pitari
- Department of Physical and Chemical Sciences, Universitá dell'Aquila, L'Aquila, Italy
- D. A. Plummer
- Environment and Climate Change Canada, Montréal, Canada
- L. E. Revell
- Institute for Atmospheric and Climate Science, ETH Zürich (ETHZ), Zürich, Switzerland
- D. Saint-Martin
- CNRM UMR 3589, Météo-France/CNRS, Toulouse, France
- R. Schofield
- School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia
- A. Stenke
- Institute for Atmospheric and Climate Science, ETH Zürich (ETHZ), Zürich, Switzerland
- K. Stone
- School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia
- K. Sudo
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
- T. Y. Tanaka
- Meteorological Research Institute (MRI), Tsukuba, Japan
- S. Tilmes
- National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA
- Y. Yamashita
- National Institute of Environmental Studies (NIES), Tsukuba, Japan
- K. Yoshida
- Meteorological Research Institute (MRI), Tsukuba, Japan
- G. Zeng
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
- DOI
- https://doi.org/10.5194/gmd-10-639-2017
- Journal volume & issue
-
Vol. 10,
no. 2
pp. 639 – 671
Abstract
We present an overview of state-of-the-art chemistry–climate and chemistry transport models that are used within phase 1 of the Chemistry–Climate Model Initiative (CCMI-1). The CCMI aims to conduct a detailed evaluation of participating models using process-oriented diagnostics derived from observations in order to gain confidence in the models' projections of the stratospheric ozone layer, tropospheric composition, air quality, where applicable global climate change, and the interactions between them. Interpretation of these diagnostics requires detailed knowledge of the radiative, chemical, dynamical, and physical processes incorporated in the models. Also an understanding of the degree to which CCMI-1 recommendations for simulations have been followed is necessary to understand model responses to anthropogenic and natural forcing and also to explain inter-model differences. This becomes even more important given the ongoing development and the ever-growing complexity of these models. This paper also provides an overview of the available CCMI-1 simulations with the aim of informing CCMI data users.