Frontiers in Marine Science (May 2021)

Responses of Southern Ocean Seafloor Habitats and Communities to Global and Local Drivers of Change

  • Madeleine J. Brasier,
  • David Barnes,
  • Narissa Bax,
  • Angelika Brandt,
  • Angelika Brandt,
  • Anne B. Christianson,
  • Anne B. Christianson,
  • Andrew J. Constable,
  • Andrew J. Constable,
  • Rachel Downey,
  • Blanca Figuerola,
  • Huw Griffiths,
  • Julian Gutt,
  • Susanne Lockhart,
  • Simon A. Morley,
  • Alexandra L. Post,
  • Anton Van de Putte,
  • Anton Van de Putte,
  • Anton Van de Putte,
  • Hanieh Saeedi,
  • Hanieh Saeedi,
  • Hanieh Saeedi,
  • Jonathan S. Stark,
  • Michael Sumner,
  • Catherine L. Waller

DOI
https://doi.org/10.3389/fmars.2021.622721
Journal volume & issue
Vol. 8

Abstract

Read online

Knowledge of life on the Southern Ocean seafloor has substantially grown since the beginning of this century with increasing ship-based surveys and regular monitoring sites, new technologies and greatly enhanced data sharing. However, seafloor habitats and their communities exhibit high spatial variability and heterogeneity that challenges the way in which we assess the state of the Southern Ocean benthos on larger scales. The Antarctic shelf is rich in diversity compared with deeper water areas, important for storing carbon (“blue carbon”) and provides habitat for commercial fish species. In this paper, we focus on the seafloor habitats of the Antarctic shelf, which are vulnerable to drivers of change including increasing ocean temperatures, iceberg scour, sea ice melt, ocean acidification, fishing pressures, pollution and non-indigenous species. Some of the most vulnerable areas include the West Antarctic Peninsula, which is experiencing rapid regional warming and increased iceberg-scouring, subantarctic islands and tourist destinations where human activities and environmental conditions increase the potential for the establishment of non-indigenous species and active fishing areas around South Georgia, Heard and MacDonald Islands. Vulnerable species include those in areas of regional warming with low thermal tolerance, calcifying species susceptible to increasing ocean acidity as well as slow-growing habitat-forming species that can be damaged by fishing gears e.g., sponges, bryozoan, and coral species. Management regimes can protect seafloor habitats and key species from fishing activities; some areas will need more protection than others, accounting for specific traits that make species vulnerable, slow growing and long-lived species, restricted locations with optimum physiological conditions and available food, and restricted distributions of rare species. Ecosystem-based management practices and long-term, highly protected areas may be the most effective tools in the preservation of vulnerable seafloor habitats. Here, we focus on outlining seafloor responses to drivers of change observed to date and projections for the future. We discuss the need for action to preserve seafloor habitats under climate change, fishing pressures and other anthropogenic impacts.

Keywords