Drones (Aug 2024)

Improved Nonlinear Model Predictive Control Based Fast Trajectory Tracking for a Quadrotor Unmanned Aerial Vehicle

  • Hongyue Ma,
  • Yufeng Gao,
  • Yongsheng Yang,
  • Shoulin Xu

DOI
https://doi.org/10.3390/drones8080387
Journal volume & issue
Vol. 8, no. 8
p. 387

Abstract

Read online

This article studies a nonlinear model predictive control (NMPC) scheme for the trajectory tracking efficiency of a quadcopter UAV. A cost function is first proposed that incorporates weighted increments of control forces in each direction, followed by a weighted summation. Furthermore, a contraction constraint for the cost function is introduced based on the numerical convergence of the system for the sampling period of the UAV control force. Then, an NMPC scheme based on improved continuous/generalized minimum residuals (C/GMRES) is proposed to obtain acceptable control performance and reduce computational complexity. The proposed control scheme achieves efficient and smooth tracking control of the UAV while guaranteeing the closed-loop stability of the system. Finally, simulation results are presented to illustrate the effectiveness and superior performance of the proposed NMPC control scheme.

Keywords