BMC Chemistry (Jan 2024)

The effectiveness of multivariate and univariate spectrophotometric techniques for the concurrent estimation of ornidazole and ciprofloxacin HCl in tablet formulation and spiked serum: estimating greenness and whiteness profile

  • Amir A. Sakur,
  • Duaa Al Zakri

DOI
https://doi.org/10.1186/s13065-024-01126-1
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 16

Abstract

Read online

Abstract In this manuscript, the effectiveness of multivariate and univariate tools in conjunction with spectrophotometric techniques was evaluated for the concurrent analysis of ciprofloxacin (CI) and ornidazole (OR) in prepared mixtures, tablets, and human serum. The artificial neural network was chosen as the multivariate Technique. Bayesian regularization (trainbr) and Levenberg–Marquardt algorithms (trainlm), were constructed and trained using feed-forward back-propagation learning. The optimal logarithm was determined based on mean recovery, mean square error of prediction (MSEP), relative root mean square error of prediction (RRMSEP), and bias-corrected MSEP (BCMSEP) scores. Trainbr outperformed trainlm, yielding a mean recovery of 100.05% for CI and 99.84% for OR, making it the preferred algorithm. Fourier self-deconvolution and mean-centering transforms were chosen as the univariate Techniques. Fourier self-deconvolution was applied to the zero-order spectra of ciprofloxacin and ornidazole by electing an appropriate full width at half maximum, enhancing peak resolution at 380.1 nm and 314.2 nm for CI and OR, respectively. Mean centering transform was applied to CI and OR ratio spectra to eliminate constant signals, enabling accurate quantification of CI and OR at 272.0 nm and 306.2 nm, respectively. The introduced approaches were optimized and validated for precise CI and OR analysis, with statistical comparison against the HPLC method revealing no notable differences. The sustainability of these approaches was confirmed through the green certificate (modified eco-scale), AGP, and whiteness-evaluation tool, corroborating their ecological viability.

Keywords