IEEE Access (Jan 2022)

A Survey on Machine Learning Software-Defined Wireless Sensor Networks (ML-SDWSNs): Current Status and Major Challenges

  • F. Fernando Jurado-Lasso,
  • Letizia Marchegiani,
  • J. F. Jurado,
  • Adnan M. Abu-Mahfouz,
  • Xenofon Fafoutis

DOI
https://doi.org/10.1109/ACCESS.2022.3153521
Journal volume & issue
Vol. 10
pp. 23560 – 23592

Abstract

Read online

Wireless Sensor Network (WSN), which are enablers of the Internet of Things (IoT) technology, are typically used en-masse in widely physically distributed applications to monitor the dynamic conditions of the environment. They collect raw sensor data that is processed centralised. With the current traditional techniques of state-of-art WSN programmed for specific tasks, it is hard to react to any dynamic change in the conditions of the environment beyond the scope of the intended task. To solve this problem, a synergy between Software-Defined Networking (SDN) and WSN has been proposed. This paper aims to present the current status of Software-Defined Wireless Sensor Network (SDWSN) proposals and introduce the readers to the emerging research topic that combines Machine Learning (ML) and SDWSN concepts, also called ML-SDWSNs. ML-SDWSN grants an intelligent, centralised and resource-aware architecture to achieve improved network performance and solve the challenges currently found in the practical implementation of SDWSNs. This survey provides helpful information and insights to the scientific and industrial communities, and professional organisations interested in SDWSN, mainly the current state-of-art, ML techniques, and open issues.

Keywords