Molecules (Dec 2016)

Inhibition of Hypoxia-Induced Retinal Angiogenesis by Specnuezhenide, an Effective Constituent of Ligustrum lucidum Ait., through Suppression of the HIF-1α/VEGF Signaling Pathway

  • Jianming Wu,
  • Xiao Ke,
  • Wei Fu,
  • Xiaoping Gao,
  • Hongcheng Zhang,
  • Wei Wang,
  • Na Ma,
  • Manxi Zhao,
  • Xiaofeng Hao,
  • Zhirong Zhang

DOI
https://doi.org/10.3390/molecules21121756
Journal volume & issue
Vol. 21, no. 12
p. 1756

Abstract

Read online

Specnuezhenide (SPN), one of the main ingredients of Chinese medicine “Nü-zhen-zi”, has anti-angiogenic and vision improvement effects. However, studies of its effect on retinal neovascularization are limited so far. In the present study, we established a vascular endothelial growth factor A (VEGFA) secretion model of human acute retinal pigment epithelial-19 (ARPE-19) cells by exposure of 150 μM CoCl2 to the cells and determined the VEGFA concentrations, the mRNA expressions of VEGFA, hypoxia inducible factor-1α (HIF-1α) & prolyl hydroxylases 2 (PHD-2), and the protein expressions of HIF-1α and PHD-2 after treatment of 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole (YC-1, 1.0 μg/mL) or SPN (0.2, 1.0 and 5.0 μg/mL). Furthermore, rat pups with retinopathy were treated with SPN (5.0 and 10.0 mg/kg) in an 80% oxygen atmosphere and the retinal avascular areas were assessed through visualization using infusion of ADPase and H&E stains. The results showed that SPN inhibited VEGFA secretion by ARPE-19 cells under hypoxia condition, down-regulated the mRNA expressions of VEGFA and PHD-2 slightly, and the protein expressions of VEGFA, HIF-1α and PHD-2 significantly in vitro. SPN also prevented hypoxia-induced retinal neovascularization in a rat model of oxygen-induced retinopathy in vivo. These results indicate that SPN ameliorates retinal neovascularization through inhibition of HIF-1α/VEGF signaling pathway. Therefore, SPN has the potential to be developed as an agent for the prevention and treatment of diabetic retinopathy.

Keywords