Computation (Aug 2024)

Numerical Modeling and Simulation of Vehicular Crashes into Three-Bar Metal Bridge Rail

  • Howie Fang,
  • Christopher Jaus,
  • Qian Wang,
  • Emre Palta,
  • Lukasz Pachocki,
  • Dawid Bruski

DOI
https://doi.org/10.3390/computation12080165
Journal volume & issue
Vol. 12, no. 8
p. 165

Abstract

Read online

Advanced finite element (FE) modeling and simulations were performed on vehicular crashes into a three-bar metal bridge rail (TMBR). The FE models of a sedan, a pickup truck, and a TMBR section were adopted in the crash simulations subject to Manual for Assessing Safety Hardware (MASH) Test Level 2 (TL-2) and Test Level 3 (TL-3) requirements. The test vehicle models were first validated using full-scale physical crash tests conducted on a two-bar metal bridge using a sedan and a pickup truck with similar overall physical properties and sizes to their respective vehicles used in the simulations. The validated vehicular models were then used to evaluate the crash performance of the TMBR using MASH evaluation criteria for structural adequacy, occupant risk, and post-impact trajectory. The TMBR met all MASH TL-2 requirements but failed to meet the MASH TL-3 Criteria H and N requirements when impacted by the sedan. The TMBR was also evaluated under in-service conditions (behind a 1.52 m wide sidewalk) and impacted by the sedan under MASH TL-3 conditions. The simulation results showed that the TMBR behind a sidewalk met all safety requirements except for the occupant impact velocity in the longitudinal direction, which exceeded the MASH limit by 3.93%.

Keywords