Light: Science & Applications (Apr 2024)

Efficient and bright broadband electroluminescence based on environment-friendly metal halide nanoclusters

  • Dingshuo Zhang,
  • Meiyi Zhu,
  • Yifan He,
  • Qingli Cao,
  • Yun Gao,
  • Hongjin Li,
  • Guochao Lu,
  • Qiaopeng Cui,
  • Yongmiao Shen,
  • Haiping He,
  • Xingliang Dai,
  • Zhizhen Ye

DOI
https://doi.org/10.1038/s41377-024-01427-z
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Broadband electroluminescence based on environment-friendly emitters is promising for healthy lighting yet remains an unprecedented challenge to progress. The copper halide-based emitters are competitive candidates for broadband emission, but their high-performance electroluminescence shows inadequate broad emission bandwidth of less than 90 nm. Here, we demonstrate efficient ultra-broadband electroluminescence from a copper halide (CuI) nanocluster single emitter prepared by a one-step solution synthesis-deposition process, through dedicated design of ligands and subtle selection of solvents. The CuI nanocluster exhibits high rigidity in the excitation state as well as dual-emissive modes of phosphorescence and temperature-activated delayed fluorescence, enabling the uniform cluster-composed film to show excellent stability and high photoluminescent efficiency. In consequence, ultra-broadband light-emitting diodes (LEDs) present nearly identical performance in an inert or air atmosphere without encapsulation and outstanding high-temperature operation performance, reaching an emission full width at half maximum (FWHM) of ~120 nm, a peak external quantum efficiency of 13%, a record maximum luminance of ~50,000 cd m−2, and an operating half-lifetime of 137 h at 100 cd m−2. The results highlight the potential of copper halide nanoclusters for next-generation healthy lighting.