Foods (Jul 2024)
Survival of <i>Salmonella</i> spp., <i>Escherichia coli</i> O157:H7, and <i>Listeria monocytogenes</i> in Ready-to-Eat “Guacamole”: Role of Added Antimicrobials
Abstract
Ensuring the microbiological safety of food products is majorly important to regulatory agencies, producers, and consumers. This study aimed to examine the effects of three different antimicrobial agents, including chitosan (CH), mastic oil (M), and citric acid (CA), individually or as a combination, against Salmonella spp., Escherichia coli O157:H7, and Listeria monocytogenes (artificially inoculated) in Guacamole, a ready-to-eat (RTE) avocado-based salad. The Guacamole samples included untreated samples, designated as CNL, and samples treated as follows: CA 0.15% and CA 0.30% with citric acid added at 0.15% and 0.30% v/w; CH 0.5% and CH 1% with chitosan at 0.5 and 1% v/w; M 0.2% and M 0.4% with mastic essential oil (EO) at 0.2% and 0.4% v/w; CACH with CA 0.30% and CH 1% v/w; CAM with CA 0.30% and M 0.4% v/w; CHM with CH 1% and M 0.4% v/w; and CACHM with CA 0.30%, CH 1%, and M 0.4% v/w. Microbiological evaluation, monitoring of the pH values, and proximate analyses (moisture, fat, protein, ash, and water activity) were performed at different time intervals (days 0, 1, 3, 5, and 7) at two storage temperatures (4 and 10 °C). Antimicrobial treatments, particularly CH 1% and CACHM, effectively (p Salmonella spp. and E. coli O157:H7 populations at 4 °C, while CACHM showed the most efficacy against L. monocytogenes. However, at 10 °C, antimicrobials had limited impact, and the bacterial counts exhibited an increasing trend during storage. The pH values in the avocado-based salad samples showed, in general, higher decreases at 10 compared to 4 °C, with the CHM combination showing the highest antimicrobial effect.
Keywords