Journal of Nanostructures (Jun 2013)
Forced-Vibration Analysis of a Coupled System of SLGSs by Visco- Pasternak Medium Subjected to a Moving Nano-particle
Abstract
In this study, forced-vibration analysis of a coupled system of single layered graphene sheets (SLGSs) subjected to the moving nano-particle is carried out based on nonlocal elasticity theory of orthotropic plate. Two SLGSs are coupled with elastic medium which is simulated by Pasternak and Visco-Pasternak models. Using Hamilton’s principle, governing differential equations of motion are derived and solved analytically. The effects of small scale, aspect ratio, velocity of nano-particle, time parameter, mechanical properties of graphene sheets, Visco-elastic medium on the maximum dynamic responses of each SLGSs are studied. Results indicate that, if the medium (elastic or visco-elastic medium) of coupled system becomes more rigid, the maximum dynamic displacements of both SLGSs will be closer together.
Keywords