Crystals (May 2022)

Pt-Modified Interfacial Engineering for Enhanced Photocatalytic Performance of 3D Ordered Macroporous TiO<sub>2</sub>

  • Shunhong Dong,
  • Juan Wu,
  • Lanlan Huang,
  • Hong-En Wang

DOI
https://doi.org/10.3390/cryst12060778
Journal volume & issue
Vol. 12, no. 6
p. 778

Abstract

Read online

Narrowing the band gap and increasing the photodegradation efficiency of TiO2-based photocatalysts are very important for their wide application in environment-related fields such as photocatalytic degradation of toxic pollutants in wastewater. Herein, a three-dimensionally ordered macroporous Pt-loaded TiO2 photocatalyst (3DOM Pt/TiO2) has been successfully synthesized using a facile colloidal crystal-template method. The resultant composite combines several morphological/structural advantages, including uniform 3D ordered macroporous skeletons, high crystallinity, large porosity and an internal electric field formed at Pt/TiO2 interfaces. These unique features enable the 3DOM Pt/TiO2 to possess a large surface for photocatalytic reactions and fast diffusion for mass transfer of reactants as well as efficient suppression of recombination for photogenerated electron-hole pairs in TiO2. Thus, the 3DOM Pt/TiO2 exhibits significantly enhanced photocatalytic activity. Typically, 88% of RhB can be degraded over the 3DOM Pt/TiO2 photocatalyst under visible light irradiation (λ ≥ 420 nm) within 100 min, much higher than that of the commercial TiO2 nanoparticles (only 37%). The underlying mechanism for the enhanced photocatalytic activity of 3DOM Pt/TiO2 has been further analyzed based on energy band theory and ascribed to the formation of Schottky-type Pt/TiO2 junctions. The proposed method herein can provide new references for further improving the photocatalytic efficiency of other photocatalysts via rational structural/morphological engineering.

Keywords