Sensors (Jul 2024)

Multiview Spatial-Temporal Meta-Learning for Multivariate Time Series Forecasting

  • Liang Zhang,
  • Jianping Zhu,
  • Bo Jin,
  • Xiaopeng Wei

DOI
https://doi.org/10.3390/s24144473
Journal volume & issue
Vol. 24, no. 14
p. 4473

Abstract

Read online

Multivariate time series modeling has been essential in sensor-based data mining tasks. However, capturing complex dynamics caused by intra-variable (temporal) and inter-variable (spatial) relationships while simultaneously taking into account evolving data distributions is a non-trivial task, which faces accumulated computational overhead and multiple temporal patterns or distribution modes. Most existing methods focus on the former direction without adaptive task-specific learning ability. To this end, we developed a holistic spatial-temporal meta-learning probabilistic inference framework, entitled ST-MeLaPI, for the efficient and versatile learning of complex dynamics. Specifically, first, a multivariate relationship recognition module is utilized to learn task-specific inter-variable dependencies. Then, a multiview meta-learning and probabilistic inference strategy was designed to learn shared parameters while enabling the fast and flexible learning of task-specific parameters for different batches. At the core are spatial dependency-oriented and temporal pattern-oriented meta-learning approximate probabilistic inference modules, which can quickly adapt to changing environments via stochastic neurons at each timestamp. Finally, a gated aggregation scheme is leveraged to realize appropriate information selection for the generative style prediction. We benchmarked our approach against state-of-the-art methods with real-world data. The experimental results demonstrate the superiority of our approach over the baselines.

Keywords