Scientific Reports (Aug 2021)

Comparative genome analysis of Bacillus thuringiensis strain HD521 and HS18-1

  • Hongwei Sun,
  • Xing Xiang,
  • Qiao Li,
  • Hui Lin,
  • Xiaolin Wang,
  • Jie Sun,
  • Long Luo,
  • Aiping Zheng

DOI
https://doi.org/10.1038/s41598-021-96133-w
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Bacillus thuringiensis (Bt) is an important biological insecticide used to management of different agricultural pests by producing toxic parasporal crystals proteins. Strain HD521 has an antagonistic effect against Rhizoctonia solani AG1IA, the causal agent of rice sheath blight. This strain with three cry7 genes can the formation of bipyramidal parasporal crystals (BPCs). BPCs are used for insecticidal activities against Henosepilachna vigintioctomaculata larva (Coleoptera). Strain HS18-1 contains different types of BPCs encoding genes and has effective toxicity for Lepidoptera and Diptera insects. Here we report the whole genome sequencing and assembly of HD521 and HS18-1 strains and analyzed the genome constitution covering virulence factors, types of plasmid, insertion sequences, and prophage sequences. The results showed that the genome of strain HD521 contains a circular chromosome and six circular plasmids, encoding eight types of virulence protein factors [Immune Inhibitor A, Hemolytic Enterotoxin, S-layer protein, Phospholipase C, Zwittermicin A-resistance protein, Metalloprotease, Chitinase, and N-acyl homoserine lactonase (AiiA)], four families of insertion sequence, and comprises six pro-phage sequences. The genome of strain HS18-1 contains one circular chromosome and nine circular plasmids, encoding five types of virulence protein factors [Hemolytic Enterotoxin, S-layer protein, Phospholipase C, Chitinase, and N-acyl homoserine lactonase (AiiA)] and four families of insertion sequence, and comprises of three pro-phage sequences. The obtained results will contribute to deeply understand the B. thuringiensis strain HD521 and HS18-1 at the genomic level.