Estimation of Garden Chrysanthemum Crown Diameter Using Unmanned Aerial Vehicle (UAV)-Based RGB Imagery
Jiuyuan Zhang,
Jingshan Lu,
Qiuyan Zhang,
Qimo Qi,
Gangjun Zheng,
Fadi Chen,
Sumei Chen,
Fei Zhang,
Weimin Fang,
Zhiyong Guan
Affiliations
Jiuyuan Zhang
Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Jingshan Lu
Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Qiuyan Zhang
Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Qimo Qi
Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Gangjun Zheng
Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Fadi Chen
Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Sumei Chen
Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Fei Zhang
Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Weimin Fang
Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Zhiyong Guan
Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Crown diameter is one of the crucial indicators for evaluating the adaptability, growth quality, and ornamental value of garden chrysanthemums. To accurately obtain crown diameter, this study employed an unmanned aerial vehicle (UAV) equipped with a RGB camera to capture orthorectified canopy images of 64 varieties of garden chrysanthemums at different growth stages. Three methods, namely RGB color space, hue-saturation-value (HSV) color space, and the mask region-based convolutional neural network (Mask R-CNN), were employed to estimate the crown diameter of garden chrysanthemums. The results revealed that the Mask R-CNN exhibited the best performance in crown diameter estimation (sample number = 2409, R2 = 0.9629, RMSE = 2.2949 cm). Following closely, the HSV color space-based model exhibited strong performance (sample number = 2409, R2 = 0.9465, RMSE = 3.4073 cm). Both of the first two methods were efficient in estimating crown diameter throughout the entire growth stage. In contrast, the RGB color space-based model exhibited slightly lower performance (sample number = 1065, R2 = 0.9011, RMSE = 3.3418 cm) and was only applicable during periods when the entire plant was predominantly green. These findings provide theoretical and technical support for utilizing UAV-based imagery to estimate the crown diameter of garden chrysanthemums.