Minerals (Aug 2022)

Petrogenesis of the Late Jurassic Granodiorite and Its Implications for Tectonomagmatic Evolution in the Nuocang District, Western Gangdeses

  • Junsheng Jiang,
  • Shunbao Gao,
  • Bo Bao,
  • Peng Hu,
  • Xin Chen,
  • Kan Tian,
  • Pengcheng Huang,
  • Jian Huang,
  • Xinran Guo

DOI
https://doi.org/10.3390/min12081058
Journal volume & issue
Vol. 12, no. 8
p. 1058

Abstract

Read online

The Gangdese magmatic rocks of the southern Lhasa terrane, are generally thought to be an important window to witness the formation and evolution of the Neo-Tethys oceanic opening, subduction, and closure, and India-Eurasian continental collision. We investigated a new occurrence of granodiorite in the Nuocang district of western Gangdese, southern Lhasa terrane, and conducted a series of analyses on their petrology, chronology, and geochemistry. The Nuocang granodiorites have the zircon U-Pb ages of 151–154 Ma, which suggest that Late Jurassic granitoids are present in the western Gangdese of southern Lhasa terrane. They are relatively high in SiO2, Al2O3, low K2O, Na2O, and Sr/Y ratios, enrichments of LILE and LREE, and depletion of HFSE, with the positive correlation between Rb and Th, and negative correlations between SiO2 and P2O5, Rb, and Y, showing the features of I-type granites. The relatively high (87Sr/86Sr)i values from 0.712231 to 0.712619, low εNd(t) values from −9.56 to −8.99, together with the negative εHf(t) values from −10.8 to −5.0 (mean value −8.9) suggested that the Nuocang granodiorites probably sourced from the partial melting of the ancient Lhasa terrane, with parts of mantle materials involving in. Combined with the previous geochronology and geochemical data of Mesozoic magmas in the Gangdese belt, as well as the Late Jurassic granodiorite, in this paper, we propose that the Nuocang granodiorites formed in a continental margin arc environment triggered by the northward subduction of Neo−Tethys oceanic crust.

Keywords