Molecules (Sep 2023)

Complexity-Building ESIPT-Assisted Synthesis of Fused Polyheterocyclic Sulfonamides

  • Srinivas Beduru,
  • Andrei G. Kutateladze

DOI
https://doi.org/10.3390/molecules28186549
Journal volume & issue
Vol. 28, no. 18
p. 6549

Abstract

Read online

Excited State Intramolecular Proton Transfer (ESIPT), originally discovered and explored in depth in a number of extensive photophysical studies, is more recently rediscovered as a powerful synthetic tool, offering rapid access to complex polyheterocycles. In our prior work we have employed ESIPT in aromatic o-keto amines and amides, leading to diverse primary photoproducts—complex quinolinols or azacanes possessing a fused lactam moiety—which could additionally be modified in short, high-yielding postphotochemical reactions to further grow complexity of the heterocyclic core scaffold and/or to decorate it with additional functional groups. Given that sulfonamides are generally known as privileged substructures, in this study we pursued two goals: (i) To explore whether sulfonamides could behave as proton donors in the context of ESIPT-initiated photoinduced reactions; (ii) To assess the scope of subsequent complexity-building photochemical and postphotochemical steps, which give access to polyheterocyclic molecular cores with fused cyclic sulfonamide moieties. In this work we show that this is indeed the case. Simple sulfonamide-containing photoprecursors produced the sought-after heterocyclic products in experimentally simple photochemical reactions accompanied by significant step-normalized complexity increases as corroborated by the Böttcher complexity scores.

Keywords