IEEE Access (Jan 2019)

An Effective Method for Submarine Buried Pipeline Detection via Multi-Sensor Data Fusion

  • Minglei Guan,
  • Yaxin Cheng,
  • Qingquan Li,
  • Chisheng Wang,
  • Xu Fang,
  • Jianwei Yu

DOI
https://doi.org/10.1109/ACCESS.2019.2938264
Journal volume & issue
Vol. 7
pp. 125300 – 125309

Abstract

Read online

Submarine pipelines are important resource delivery devices between land and ocean. For safety reasons, pipelines are often embedded beneath the seabed at a certain depth, to reduce the risk of direct damage to the pipeline. In the past, various kinds of detection equipment have been used for pipeline inspection, to ensure the normal operation of pipelines in practical applications. Acoustic detection technology is the dominant method to monitor buried submarine pipelines. Extracting and integrating the information in acoustic images, such as the route and burial depth, can help to monitor the status of a pipeline. However, most of the existing methods are based on limited parameters, and they cannot be used to precisely detect and locate a submarine pipeline under complex conditions. In this study, a multi-sensor surveying system was used, which integrates a sub-bottom profiler (SBP) and the Shipborne Over- and Under-Water Integrated Mobile Mapping System (SiOUMMS) on the same ship. The data acquired in this system include acoustic profile images and the over- and under-water topography of the pipeline route area. We also designed a position deviation correction method to improve the accuracy of the pipeline detection positioning, i.e., pipeline positioning correction in the real-time kinematic (RTK) positioning data and pipeline horizontal route correction in the integrated data. Compared with the uncorrected pipeline detection positioning result, the reliability of the pipeline inspection result is greatly improved, and the effectiveness and merit of the proposed method are clearly demonstrated. Finally, we conducted a buried pipeline safety assessment for the installation of newly designed wharf piles at Mawan Port of Shenzhen, China, where the results showed that one of the first rows of wharf piles would collide with the sewage pipeline.

Keywords