Ecosphere (Jun 2023)

Using culturally significant birds to guide the timing of prescribed fires in the Klamath Siskiyou Bioregion

  • Linda L. Long,
  • Frank K. Lake,
  • Jaime L. Stephens,
  • John D. Alexander,
  • C. John Ralph,
  • Jared D. Wolfe

DOI
https://doi.org/10.1002/ecs2.4541
Journal volume & issue
Vol. 14, no. 6
pp. n/a – n/a

Abstract

Read online

Abstract Historically, wildfire and tribal burning practices played important roles in shaping ecosystems throughout the Klamath Siskiyou Bioregion of northern California and southern Oregon. Over the past several decades, there has been increased interest in the application of fire for forest management through the implementation of prescribed fires within habitats that are used by a diversity of migrant and resident land birds. While many bird species may benefit from habitat enhancements associated with wildfires, cultural burning, and prescribed fire, individuals may face direct or indirect harm. In this study, we analyzed the timing of breeding and molting in 11 species of culturally significant land birds across five ecologically distinct regions of northern California and southern Oregon to explore the potential timeframes that these bird species may be vulnerable to wildland fires (wildfire, prescribed fire, or cultural burning). We estimated that these selected species adhered to a breeding season from April 21 to August 23 and a molting season from June 30 to October 7 based on bird capture data collected between 1992 and 2014. Within these date ranges, we found that breeding and molting seasons of resident and migratory bird species varied temporally and spatially throughout our study region. Given this variability, spring fires that occur prior to April 21 and fall fires that occur after October 7 may reduce the potential for direct and indirect negative impacts on these culturally significant birds across the region. This timing corresponds with some Indigenous ecocultural burning practices that are aligned with traditionally observed environmental cues relating to patterns of biological phenology, weather, and astronomy. We detail the timing of breeding and molting seasons more specific to regions and species, and estimate 75%, 50%, and 25% quartiles for each season to allow for greater flexibility in planning the timing of prescribed fires and cultural burning, or regarding the potential implications of wildfires. The results of our study may serve as an additional resource for tribal members and cultural practitioners (when examined within the context of Indigenous Traditional Ecological Knowledge) and forest and wildland fire managers to promote stable populations of culturally significant bird species within fire‐dependent forest systems.

Keywords