Flexible retinomorphic vision sensors with scotopic and photopic adaptation for a fully flexible neuromorphic machine vision system
Lei Shi,
Ke Shi,
Zhi‐Cheng Zhang,
Yuan Li,
Fu‐Dong Wang,
Shu‐Han Si,
Zhi‐Bo Liu,
Tong‐Bu Lu,
Xu‐Dong Chen,
Jin Zhang
Affiliations
Lei Shi
The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics Nankai University Tianjin China
Ke Shi
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science and Engineering Tianjin University of Technology Tianjin China
Zhi‐Cheng Zhang
The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics Nankai University Tianjin China
Yuan Li
The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics Nankai University Tianjin China
Fu‐Dong Wang
The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics Nankai University Tianjin China
Shu‐Han Si
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science and Engineering Tianjin University of Technology Tianjin China
Zhi‐Bo Liu
The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics Nankai University Tianjin China
Tong‐Bu Lu
MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science and Engineering Tianjin University of Technology Tianjin China
Xu‐Dong Chen
The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics Nankai University Tianjin China
Jin Zhang
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering Peking University Beijing China
Abstract Bioinspired neuromorphic machine vision system (NMVS) that integrates retinomorphic sensing and neuromorphic computing into one monolithic system is regarded as the most promising architecture for visual perception. However, the large intensity range of natural lights and complex illumination conditions in actual scenarios always require the NMVS to dynamically adjust its sensitivity according to the environmental conditions, just like the visual adaptation function of the human retina. Although some opto‐sensors with scotopic or photopic adaption have been developed, NMVSs, especially fully flexible NMVSs, with both scotopic and photopic adaptation functions are rarely reported. Here we propose an ion‐modulation strategy to dynamically adjust the photosensitivity and time‐varying activation/inhibition characteristics depending on the illumination conditions, and develop a flexible ion‐modulated phototransistor array based on MoS2/graphdiyne heterostructure, which can execute both retinomorphic sensing and neuromorphic computing. By controlling the intercalated Li+ ions in graphdiyne, both scotopic and photopic adaptation functions are demonstrated successfully. A fully flexible NMVS consisting of front‐end retinomorphic vision sensors and a back‐end convolutional neural network is constructed based on the as‐fabricated 28 × 28 device array, demonstrating quite high recognition accuracies for both dim and bright images and robust flexibility. This effort for fully flexible and monolithic NMVS paves the way for its applications in wearable scenarios.