Remote Sensing (Jun 2018)

Estimation of Water Level Changes of Large-Scale Amazon Wetlands Using ALOS2 ScanSAR Differential Interferometry

  • Ning Cao,
  • Hyongki Lee,
  • Hahn Chul Jung,
  • Hanwen Yu

DOI
https://doi.org/10.3390/rs10060966
Journal volume & issue
Vol. 10, no. 6
p. 966

Abstract

Read online

Differential synthetic aperture radar (SAR) interferometry (DInSAR) has been successfully used to estimate water level changes (∂h/∂t) over wetlands and floodplains. Specifically, amongst ALOS PALSAR datasets, the fine-beam stripmap mode has been mostly implemented to estimate ∂h/∂t due to its availability of multitemporal images. However, the fine-beam observation mode provides limited swath coverage to study large floodplains and wetlands, such as the Amazon floodplains. Therefore, for the first time, this paper demonstrates that ALOS2 ScanSAR data can be used to estimate the large-scale ∂h/∂t in Amazon floodplains. The basic procedures and challenges of DInSAR processing with ALOS2 ScanSAR data are addressed and final ∂h/∂t maps are generated based on the Satellite with ARgos and ALtiKa (SARAL) altimetry’s reference data. This study reveals that the local ∂h/∂t patterns of Amazon floodplains are spatially complex with highly interconnected floodplain channels, but the large-scale (with 350 km swath) ∂h/∂t patterns are simply characterized by river water flow directions.

Keywords