Heliyon (Apr 2024)

Effect of banana tree leaves ash as cementitious material on the durability of concrete against sulphate and acid attacks

  • Shahzeb Bhutto,
  • Fahad-ul-Rehman Abro,
  • Mohsin Ali,
  • Abdul Salam Buller,
  • Naraindas Bheel,
  • Yaser Gamil,
  • Taoufik Najeh,
  • Ahmed Farouk Deifalla,
  • Adham E. Ragab,
  • Hamad R. Almujibah

Journal volume & issue
Vol. 10, no. 7
p. e29236

Abstract

Read online

The construction industry's rapid growth poses challenges tied to raw material depletion and increased greenhouse gas emissions. To address this, alternative materials like agricultural residues are gaining prominence due to their potential to reduce carbon emissions and waste generation. In this context this research optimizes the use of banana leaves ash as a partial cement substitution, focusing on durability, and identifying the ideal cement-to-ash ratio for sustainable concrete. For this purpose, concrete mixes were prepared with BLA replacing cement partially in different proportions i.e. (0 %, 5 %, 10 %, 15 %, & 20 %) and were analyzed for their physical, mechanical and Durability (Acid and Sulphate resistance) properties. Compressive strength, acid resistance and sulphate resistance testing continued for 90 days with the intervals of 7, 28 and 90 days. The results revealed that up to 10 % incorporation of BLA improved compressive strength by 10 %, while higher BLA proportions (up to 20 %) displayed superior performance in durability tests as compared to the conventional mix. The results reveal the potentials of banana leave ash to refine the concrete matrix by formation of addition C–S–H gel which leads towards a better performance specially in terms of durability aspect. Hence, banana leaf ash (BLA) is an efficient concrete ingredient, particularly up to 10 % of the mix. Beyond this threshold, it's still suitable for applications where extreme strength isn't the primary concern, because there may be a slight reduction in compressive strength.

Keywords