Electrochemical Science Advances (Jun 2022)

Metal oxides as electrocatalysts for water splitting: On plasmon‐driven enhanced activity

  • Maria P. de Souza Rodrigues,
  • Vítor M. Miguel,
  • Lucas D. Germano,
  • Susana I. Córdoba de Torresi

DOI
https://doi.org/10.1002/elsa.202100079
Journal volume & issue
Vol. 2, no. 3
pp. n/a – n/a

Abstract

Read online

Abstract Many technological approaches have been searched in order to overcome the main challenges concerning the world energy crisis and global environmental issues. Among them, plasmon‐driven photoelectrochemical reactions towards water electrolysis attract great attention due to their capacity to efficiently harvest solar energy. Synergism between tunable optical features and catalysts active sites of plasmonic nanomaterials gives rise to a singular perspective for photochemical processes. Through resonant photonic excitation, hot carriers’ motion facilitates the charge transfer process on the catalyst surface for chemical reactions. In this minireview, recent experimental research with emphasis on water splitting reactions have been summarized with the purpose of understanding the mechanistic hot electrons generation and transfer on the plasmonic noble metal nanoparticles (MNPs) and transition metal oxides (MOs) heterostructures. Examples of plasmonic nanomaterials are highlighted and compared for both water electrolysis semi reactions. Finally, this work concludes by describing the remaining challenges and gives some perspectives regarding the promising future of plasmon‐driven reactions investigations.

Keywords