Differences in brain structure and cognitive performance between patients with long-COVID and those with normal recovery
Breanna K. Nelson,
Lea N. Farah,
Ava Grier,
Wayne Su,
Johnson Chen,
Vesna Sossi,
Mypinder S. Sekhon,
A. Jon Stoessl,
Cheryl Wellington,
William G. Honer,
Donna Lang,
Noah D. Silverberg,
William J. Panenka
Affiliations
Breanna K. Nelson
University of British Columbia, Department of Psychiatry, 2255 Wesbrook Mall Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; British Columbia Mental Health and Substance Use Services Research Institute, 938 West 28th Ave Vancouver, BC Canada
Lea N. Farah
University of British Columbia, Department of Psychiatry, 2255 Wesbrook Mall Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; British Columbia Mental Health and Substance Use Services Research Institute, 938 West 28th Ave Vancouver, BC Canada
Ava Grier
University of British Columbia, Department of Radiology, 2775 Laurel Street Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; British Columbia Mental Health and Substance Use Services Research Institute, 938 West 28th Ave Vancouver, BC Canada
Wayne Su
University of British Columbia, Department of Psychiatry, 2255 Wesbrook Mall Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada
Johnson Chen
Vancouver General Hospital, British Columbia, 899 West 12th Ave Vancouver, BC Canada
Vesna Sossi
University of British Columbia, Department of Physics and Astronomy, 325-6224 Agricultural Road Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; Djavad Mowafaghian Center for Brain Health, 2215 Wesbrook Mall Vancouver, BC Canada
Mypinder S. Sekhon
University of British Columbia, Department of Medicine, 2775 Laurel Street Vancouver, BC Canada; Vancouver General Hospital, British Columbia, 899 West 12th Ave Vancouver, BC Canada; Djavad Mowafaghian Center for Brain Health, 2215 Wesbrook Mall Vancouver, BC Canada
A. Jon Stoessl
University of British Columbia, Department of Medicine, 2775 Laurel Street Vancouver, BC Canada; Djavad Mowafaghian Center for Brain Health, 2215 Wesbrook Mall Vancouver, BC Canada
Cheryl Wellington
University of British Columbia, Department of Pathology and Laboratory Medicine, 317 - 2194 Health Sciences Mall Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; Djavad Mowafaghian Center for Brain Health, 2215 Wesbrook Mall Vancouver, BC Canada
William G. Honer
University of British Columbia, Department of Psychiatry, 2255 Wesbrook Mall Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; British Columbia Mental Health and Substance Use Services Research Institute, 938 West 28th Ave Vancouver, BC Canada
Donna Lang
University of British Columbia, Department of Radiology, 2775 Laurel Street Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; British Columbia Mental Health and Substance Use Services Research Institute, 938 West 28th Ave Vancouver, BC Canada; Djavad Mowafaghian Center for Brain Health, 2215 Wesbrook Mall Vancouver, BC Canada
Noah D. Silverberg
University of British Columbia, Department of Psychology, 2136 West Mall Vancouver, BC Canada; Djavad Mowafaghian Center for Brain Health, 2215 Wesbrook Mall Vancouver, BC Canada
William J. Panenka
University of British Columbia, Department of Psychiatry, 2255 Wesbrook Mall Vancouver, BC Canada; British Columbia Children's Hospital Research Institute, 938 West 28th Ave Vancouver, BC Canada; British Columbia Mental Health and Substance Use Services Research Institute, 938 West 28th Ave Vancouver, BC Canada; Djavad Mowafaghian Center for Brain Health, 2215 Wesbrook Mall Vancouver, BC Canada; Corresponding author.
Background: The pathophysiology of protracted symptoms after COVID-19 is unclear. This study aimed to determine if long-COVID is associated with differences in baseline characteristics, markers of white matter diffusivity in the brain, and lower scores on objective cognitive testing. Methods: Individuals who experienced COVID-19 symptoms for more than 60 days post-infection (long-COVID) (n = 56) were compared to individuals who recovered from COVID-19 within 60 days of infection (normal recovery) (n = 35). Information regarding physical and mental health, and COVID-19 illness was collected. The National Institute of Health Toolbox Cognition Battery was administered. Participants underwent magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI). Tract-based spatial statistics were used to perform a whole-brain voxel-wise analysis on standard DTI metrics (fractional anisotropy, axial diffusivity, mean diffusivity, radial diffusivity), controlling for age and sex. NIH Toolbox Age-Adjusted Fluid Cognition Scores were used to compare long-COVID and normal recovery groups, covarying for Age-Adjusted Crystallized Cognition Scores and years of education. False discovery rate correction was applied for multiple comparisons. Results: There were no significant differences in age, sex, or history of neurovascular risk factors between the groups. The long-COVID group had significantly (p 0.05). Conclusions: Differences in diffusivity between long-COVID and normal recovery groups were found on only one DTI metric. This could represent subtle areas of pathology such as gliosis or edema, but the small effect sizes and non-specific nature of the diffusion indices make pathological inference difficult. Although long-COVID patients reported many neuropsychiatric symptoms, significant differences in objective cognitive performance were not found.