Applied Sciences (Jun 2022)
Influence of Pulse Amplitude and Frequency on Plasma Properties of a Pulsed Low-Current High-Voltage Discharge Operated at Atmospheric Pressure
Abstract
Non-equilibrium conditions in plasma are often achieved by pulsed power delivery, where the pulse shape and repetition rate determine the properties of the plasma constituents and thus its chemical reactivity. The evaluation of the latter is becoming increasingly important to understand the observed effects, especially when new application fields are targeted. The composition of the plasma and the occurring chemical reactions can be calculated using various models. Thereby, the temperature of the electrons, the electron number density, as well as the heavy particle temperature are usually required as the basis of such calculations. In this work, the influence of pulse amplitude and repetition rate on these plasma parameters is determined by laser scattering for a low-current, high-voltage discharge operated with nitrogen at atmospheric pressure. In particular, the characteristic parameters regarding the plasma free electrons in such discharges have not yet been experimentally determined to this extent. The results are validated by spectroscopic measurements, i.e., the electron density is estimated from the Stark broadening of the hydrogen beta line and the heavy particle temperature is estimated by fitting the spectrum of nitrogen molecular transitions. Depending on the operating frequency, a pure nitrogen discharge with an input power of about 650 W displays an electron density between 1.7×1021m−3 and 2.0×1021m−3 with electron temperatures in the range of 40,000 K and heavy particle temperatures of about 6000 K in the core of the discharge channel. Furthermore, a relatively slow electron recombination rate in the range of 20 µs is observed.
Keywords