BMC Infectious Diseases (Jun 2022)
Detection of antiviral drug resistance in patients with congenital cytomegalovirus infection using long-read sequencing: a retrospective observational study
Abstract
Abstract Background Congenital human cytomegalovirus (cCMV) infection can cause sensorineural hearing loss and neurodevelopmental disabilities in children. Ganciclovir and valganciclovir (GCV/VGCV) improve long-term audiologic and neurodevelopmental outcomes for patients with cCMV infection; however, antiviral drug resistance has been documented in some cases. Long-read sequencing can be used for the detection of drug resistance mutations. The objective of this study was to develop full-length analysis of UL97 and UL54, target genes with mutations that confer GCV/VGCV resistance using long-read sequencing, and investigate drug resistance mutation in patients with cCMV infection. Methods Drug resistance mutation analysis was retrospectively performed in 11 patients with cCMV infection treated with GCV/VGCV. UL97 and UL54 genes were amplified using blood DNA. The amplicons were sequenced using a long-read sequencer and aligned with the reference gene. Single nucleotide variants were detected and replaced with the reference sequence. The replaced sequence was submitted to a mutation resistance analyzer, which is an open platform for drug resistance mutations. Results Two drug resistance mutations (UL54 V823A and UL97 A594V) were found in one patient. Both mutations emerged after 6 months of therapy, where viral load increased. Mutation rates subsided after cessation of GCV/VGCV treatment. Conclusions Antiviral drug resistance can emerge in patients with cCMV receiving long-term therapy. Full-length analysis of UL97 and UL54 via long-read sequencing enabled the rapid and comprehensive detection of drug resistance mutations.
Keywords