Molecules (Jul 2023)

Study on Process Optimization and Antioxidant Activity of Polysaccharide from <i>Bletilla striata</i> Extracted via Deep Eutectic Solvents

  • Liru Luo,
  • Wei Fan,
  • Jingping Qin,
  • Shiyin Guo,
  • Hang Xiao,
  • Zhonghai Tang

DOI
https://doi.org/10.3390/molecules28145538
Journal volume & issue
Vol. 28, no. 14
p. 5538

Abstract

Read online

Taking the extraction yield of Bletilla striata polysaccharide (BSP) as the index and taking the type of deep eutectic solvents (DESs), extraction time, extraction temperature, DES water content, and solid–liquid ratio as the investigation factors, single-factor and Box–Behnken response surface tests were carried out to optimize the extraction process of BSP. Thus, the antioxidant activity of BSP on DPPH radicals, ABTS radicals and ferric reducing antioxidant power were determined. The results showed that the most suitable deep eutectic solvent was DES-2, namely choline chloride-urea. The optimal extraction conditions for BSP were an extraction time of 47 min, extraction temperature of 78 °C, water content of 35%, and solid–liquid ratio of 1:25. Under this optimized condition, the extraction yield of BSP was able to reach (558.90 ± 8.83) mg/g, and recycling studies indicated the good cycle stability of the DES. Antioxidant results showed that BSP had superior antioxidant activity and had a dose–response relationship with drug concentration. Compared with Bletilla striata polysaccharide obtained via conventional hot water extraction (BSP-W), the extraction yield of BSP obtained through this method (BSP-2) increased by 36.77%, the scavenging activity of DPPH radicals increased by 24.99%, the scavenging activity of ABTS radicals increased by 41.16%, and the ferric reducing antioxidant power increased by 49.19%. Therefore, DESs as new green reagents and BSP extracted with DESs not only had a high yield but also had strong antioxidant activity.

Keywords