Defective PrO<sub>x</sub> for Efficient Electrochemical NO<sub>2</sub><sup>−</sup>-to-NH<sub>3</sub> in a Wide Potential Range
Shunhan Jia,
Xingxing Tan,
Limin Wu,
Jiaqi Feng,
Libing Zhang,
Liang Xu,
Ruhan Wang,
Xiaofu Sun,
Buxing Han
Affiliations
Shunhan Jia
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Xingxing Tan
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Limin Wu
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Jiaqi Feng
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Libing Zhang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Liang Xu
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Ruhan Wang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Xiaofu Sun
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Buxing Han
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Electrocatalytic reduction of nitrite (NO2−) is a sustainable and carbon-neutral approach to producing green ammonia (NH3). We herein report the first work on building defects on PrOx for electrochemical NO2− reduction to NH3, and demonstrate a high NH3 yield of 2870 μg h−1 cm−2 at the optimal potential of –0.7 V with a faradaic efficiency (FE) of 97.6% and excellent FEs of >94% at a wide given potential range (−0.5 to −0.8 V). The kinetic isotope effect (KIE) study suggested that the reaction involved promoted hydrogenation. Theoretical calculations clarified that there was an accelerated rate-determining step of NO2− reduction on PrOx. The results also indicated that PrOx could be durable for long-term electrosynthesis and cycling tests.