Drug Design, Development and Therapy (Dec 2018)
Multimetal organic frameworks as drug carriers: aceclofenac as a drug candidate
Abstract
Muder Al Haydar,1,2 Hussein Rasool Abid,3,4 Bruce Sunderland,5 Shaobin Wang6 1Pharmaceutics Department, College of Pharmacy, University of Kerbala, Kerbala, Iraq; 2Pharmaceutics Department, School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, WA, Australia; 3Department of Chemical Engineering, Curtin University, Perth, WA, Australia; 4Environmental Health Department, College of Applied Medical Sciences, University of Kerbala, Kerbala, Iraq; 5School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, WA, Australia; 6Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia Background: Multimetal organic frameworks (M-MOFs) were synthesized by including a second metal ion with the main base metal in the synthesis process to enhance their applications for drug delivery. Aceclofenac (ACF), a nonsteroidal anti-inflammatory analgesic drug of low aqueous solubility, was selected as a candidate for the drug delivery system Purpose: This study aimed to evaluate the loading capacity (LC) and entrapment efficiency (EE) percentages of multi-Material of Institute Lavoisier (MIL)-100(Fe) (M-MIL-100(Fe)) for ACF. Materials and methods: Hydrothermal synthesis procedure was used to prepare multi-MIL-100(Fe) samples (Zn I-MIL-100(Fe), Zn II-MIL-100(Fe), Ca I-MIL-100(Fe), Ca II-MIL-100(Fe), Mg I-MIL-100(Fe), Mg II-MIL-100(Fe), Mn I-MIL-100(Fe), and Mn II-MIL-100(Fe)). The characterization of M-MIL-100(Fe) samples was evaluated by X-ray powder diffraction (XRD), Fourier transform infrared spectra, scanning electron microscope (SEM), TGA, and N2 adsorption isotherms. The LC of M-MIL-100(Fe) and EE of ACF were determined. Nuclear magnetic resonance (NMR) and zeta-potential analyses were employed to confirm qualitatively the drug loading within M-MIL-100(Fe). Results: The ACF LC of MIL-100(Fe) was 27%, whereas the LC of M-MIL-100(Fe) was significantly increased and ranged from 37% in Ca I-MIL-100(Fe) to about 57% and 59% in Mn II-MIL-100(Fe) and Zn II-MIL-100(Fe), respectively. The ACF@M-MOFs release profiles showed slow release rates in phosphate buffer solutions at pH 6.8 and 7.4 as compared to the ACF@MIL-100(Fe). Conclusion: Therefore, M-MOFs showed a significant potential as a carrier for drug delivery systems. Keywords: aceclofenac, Mixed metal-MOF, MIL-100, drug delivery, drug loading