Applied Sciences (Jan 2021)

Experimental Study of Thermal Comfort Based on Driver Physiological Signals in Cooling Mode under Summer Conditions

  • Yunchan Shin,
  • Jeonggyun Ham,
  • Honghyun Cho

DOI
https://doi.org/10.3390/app11020845
Journal volume & issue
Vol. 11, no. 2
p. 845

Abstract

Read online

In this study, electroencephalogram (EEG), photo-plethysmography (PPG), and surface temperature measurements of subjects were taken while performing a driving simulation when the cabin and vent discharge air temperature in summer were changed from discomfort to comfort conditions. Additionally, subjective questionnaires were used to analyze the subject’s thermal comfort under the various driving environments. As a result, the surface temperatures of the forehead, left hand, right hand, and abdomen of the subject during driving were reduced by 2, 0.97, 2.18, and 5.86 °C, respectively, by operating a 12.5 °C vent cooling function at a cabin temperature of 35 °C. As a comprehensive analysis of the subjective survey, PPG, and EEG results, total power (TP), the standard deviation of N-N interval (SDNN), and the root mean square of successive differences (RMSSD) of subjects increased and stress index decreased at cabin and vent discharge air temperatures of 30–27.5 °C and 16.5–18.5 °C, respectively. Furthermore, the relative sensory motor rhythm (SMR) wave and concentration index (CI) of the frontal lobe tended to increase under the same temperature conditions. Accordingly, it was confirmed that these temperature conditions provided a pleasant driving environment for the driver and increased concentration on driving.

Keywords