Cedamaz (Mar 2018)
Estudio comparativo de métodos de extracción de características y clasificación de potenciales evocados P300
Abstract
El presente trabajo tiene por objetivo comparar la precisión en la detección de potenciales evocados P300 de dos tipos de clasificadores: Máquina de Soporte Vectorial MSV y K-vecinos más cercanos (KNN), estos dos clasificadores son entrenados y evaluados con características morfológicas y también con los coeficientes de aproximación de la Transformada Wavelet Discreta. Previo a la etapa de extracción de características se realizó un pre-procesado de la señal de Electroencefalografía (EEG), que incluye el filtrado, eliminación de artefactos, normalización y segmentación. Todo este procedimiento se realizó para muestras con promediado sincronizado de 15 señales de P300 y también para muestras de solo una señal P300. En la parte final del documento se realiza un análisis comparativo de resultados y se propone alternativas que podrían contribuir a una mejora de los porcentajes de precisión de la clasificación en trabajos futuros.