Mathematics (Oct 2023)
A New Modified Helmholtz Equation for the Expression of the Gravity Gradient and the Intensity of an Electrostatic Field in Spherical Harmonics
Abstract
In this work, it is shown that the geometry of a gravity field generated by a spheroid with low eccentricity can be described with the help of a newly modified Helmholtz equation. To distinguish this equation from the modified Helmholtz equation, we refer to it as the G-modified Helmholtz equation. The use of this new equation to study the spheroid’s gravity field is advantageous in expressing the gravity vector as a vector series of spherical harmonics. The solution of the G-modified Helmholtz equation involves both the gravity intensity g (or simply gravity g) and the intensity E of an electrostatic field as shown in sequel. An electrostatic field generated by an oblate spheroid charged with l electrons (uniform ellipsoidal charge distribution) is demonstrated to be a special case. Both gravity intensity g and intensity E are governed by the same law and can be expressed as a series of spherical harmonics, and thus the G-modified Helmholtz equation is useful for describing the gravity and electrostatic fields.
Keywords