Applied Sciences (Jan 2024)
The Effects of Parameter Settings on Triggering Time and Climb Rate during Lean-Premixed Combustion Thermoacoustic Oscillations
Abstract
This study theoretically explored the effects of parameter settings on thermoacoustic oscillations with a low-order model. Three factors were explored—combustor length, inlet gas temperature and thermal power. The research findings indicate that optimizing the parameter settings can yield better thermoacoustic oscillation suppression results. The sound pressure amplitude decreased from 3.2 × 105 Pa to 2.1 × 105 Pa as the combustor length increased from 1.2 m to 6.0 m. The triggering time increased from 0.32 s to 0.91 s when the combustion chamber length increased. The climb rate declined from 23.38 × 105 Pa/s to 3.75 × 105 Pa/s when the combustor length was elongated. The sound pressure amplitude decreased from 3.44 × 105 Pa to 2.4 × 105 Pa as the gas temperature rose from 0 to 100 °C. The triggering time and climb rate variation tendency were similar when the gas temperature increased—both declined as the gas temperature rose. The sound pressure amplitude experienced a slight fluctuation when the thermal power rose. However, the triggering time decreased from 0.26 s to 0.043 s when the thermal power improved. The climb rate increased from 18.72 × 105 Pa/s to 27.65 × 105 Pa/s when the thermal power rose. The oscillation frequency presented was completely different in three cases that had different wavelengths and oscillation intensities. The triggering time and climb rate fluctuated extensively in varying conditions, and the above two factors were interrelated and contradictory to each other when thermoacoustic oscillation was excited. This study explored parameters’ effects on triggering time and climb rate, thereby providing references for constructing a model-based control system for thermoacoustic oscillation feedback control.
Keywords