Atmospheric Chemistry and Physics (Sep 2018)

The effects of intercontinental emission sources on European air pollution levels

  • J. E. Jonson,
  • M. Schulz,
  • L. Emmons,
  • J. Flemming,
  • D. Henze,
  • K. Sudo,
  • M. Tronstad Lund,
  • M. Lin,
  • A. Benedictow,
  • B. Koffi,
  • F. Dentener,
  • T. Keating,
  • R. Kivi,
  • Y. Davila

DOI
https://doi.org/10.5194/acp-18-13655-2018
Journal volume & issue
Vol. 18
pp. 13655 – 13672

Abstract

Read online

This study is based on model results from TF HTAP (Task Force on Hemispheric Transport of Air Pollution) phase II, in which a set of source receptor model experiments have been defined, reducing global (and regional) anthropogenic emissions by 20 % in different source regions throughout the globe, with the main focus on the year 2010. All the participating models use the same set of anthropogenic emissions. Comparisons of model results to measurements are shown for selected European surface sites and for ozone sondes, but the main focus here is on the contributions to European ozone levels from different world regions, and how and why these contributions differ depending on the model. We investigate the origins by use of a novel stepwise approach, combining simple tracer calculations and calculations of CO and O3. To highlight the differences, we analyse the vertical transects of the midlatitude effects from the 20 % emission reductions.The spread in the model results increases from the simple CO tracer to CO and then to ozone as the complexity of the physical and chemical processes involved increase. As a result of non-linear ozone chemistry, the contributions from non-European relative to European sources are larger for ozone compared to the CO and the CO tracer. For annually averaged ozone the contributions from the rest of the world is larger than the effects from European emissions alone, with the largest contributions from North America and eastern Asia. There are also considerable contributions from other nearby regions to the east and from international shipping. The calculated contributions to European annual average ozone from other major source regions relative to all contributions from all major sources (RAIR – Relative Annual Intercontinental Response) have increased from 43 % in HTAP1 to 82 % in HTAP2. This increase is mainly caused by a better definition of Europe, with increased emissions outside of Europe relative to those in Europe, and by including a nearby non-European source for external-to-Europe regions. European contributions to ozone metrics reflecting human health and ecosystem damage, which mostly accumulated in the summer months, are larger than for annual ozone. Whereas ozone from European sources peaks in the summer months, the largest contributions from non-European sources are mostly calculated for the spring months, when ozone production over the polluted continents starts to increase, while at the same time the lifetime of ozone in the free troposphere is relatively long. At the surface, contributions from non-European sources are of similar magnitude for all European subregions considered, defined as TF HTAP receptor regions (north-western, south-western, eastern and south-eastern Europe).