Zhejiang Daxue xuebao. Lixue ban (Jul 2024)

Bifurcation of solutions for the problems involving jumping non-linearities with mean curvature operator on general domain(一般区域上含跳跃项平均曲率算子方程解的全局分歧)

  • 沈文国(SHEN Wenguo)

DOI
https://doi.org/10.3785/j.issn.1008-9497.2024.04.007
Journal volume & issue
Vol. 51, no. 4
pp. 443 – 449

Abstract

Read online

In this paper, we firstly establish an global bifurcation result for the problems involving jumping non-linearities with mean curvature operator in Minkowski space. As applications of the above results, we study the existence of solutions for the following problem-div(∇u/1-∇u2)=α(x)u++β(x)u-+λa(x)f(u), x∈Ω,u=0, x∈∂Ω,whereis a real parameter,Ω is a general C2 bounded domain in RN with a smooth boundary ∂Ω and N≥1,a∈C(Ω¯,(0,∞)),u+=maxu,0,u-=min-u,0, α,β∈C(Ω¯); f∈C(R,R), sf(s)>0 for s≠0,and f0∈[0,∞],where f0=lims→0f(s)/s.(建立了一般区域上含跳跃项平均曲率算子方程解的全局分歧定理,研究了问题-div(∇u/1-∇u2)=α(x)u++β(x)u-+λa(x)f(u), x∈Ω,u=0, x∈∂Ω解的存在性,其中λ≠0为实参数,Ω为在RN中有界且在其边界上光滑的C2区域,N≥1,a∈C(Ω¯,(0,∞)),u+=maxu,0,u-=min-u,0,α,β∈C(Ω¯);f∈C(R,R),对于s≠0,满足sf(s)>0;f0∈[0,∞],其中f0=lims→0f(s)/s。)

Keywords