Известия высших учебных заведений: Проблемы энергетики (Aug 2022)

Shunt power factor correction devices for damping of harmonic resonance in industrial power systems

  • V. P. Dovgun,
  • D. E. Egorov,
  • V. V. Novikov,
  • A. F. Sinjagovsky

DOI
https://doi.org/10.30724/1998-9903-2022-24-4-77-89
Journal volume & issue
Vol. 24, no. 4
pp. 77 – 89

Abstract

Read online

THE PURPOSE. Harmonic resonance has become a serious problem of shunt capacitor banks for reactive power and voltage support. Effective solution to damp out the capacitor-caused resonance is the series connection of capacitor bank with harmonic damping network. This paper presents a general design method for shunt capacitive compensating units with damping networks. The damping unit is designed in such a way that it provides harmonic filtering and adequate damping of the transient oscillations. METHODS. The method was developed for designing damping network in the form of ladder LC-two-port. The design is based on minimization of voltage total harmonic distortion (VTHD) in the point of common coupling. Normalized element parameters of the different order damping networks have been determined. RESULTS. Comparative study of transient behavior of shunt capacitive compensating units with damping networks illustrate the effectiveness of the propose structure. It has been observed that there is a significant reduction of transient overvoltage in switching of capacitor bank with damping network. CONCLUSION. This paper presents a new design method for capacitive compensating units with damping networks for industrial power systems with powerful nonlinear loads. The paper illustrates superior performance characteristics of proposed shunt capacitive compensating units by computer simulations.

Keywords