Environment International (Jul 2020)

Microplastics enhance the developmental toxicity of synthetic phenolic antioxidants by disturbing the thyroid function and metabolism in developing zebrafish

  • Hua-Jin Zhao,
  • Jian-Kang Xu,
  • Ze-Hua Yan,
  • Hong-Qiang Ren,
  • Yan Zhang

Journal volume & issue
Vol. 140

Abstract

Read online

Coexposure of MPs and other contaminants adsorbed from the environment has raised many attentions, but the understanding of the combined effects of MPs and plastic additives are limited. Butylated hydroxyanisole (BHA), a widely used synthetic phenolic antioxidant in plastics, has gained high concerns due to their unintended environmental release and potential threat to aquatic organisms. This study was conducted to reveal the influences of MPs on the bioaccumulation and developmental toxicity of BHA in zebrafish larvae. As a result, MPs promoted the accumulation of BHA in zebrafish larvae and enhanced the toxicity of BHA in larvae development manifested by reduced hatching rates, increased malformation rates and decreased calcified vertebrae. Although the concentration of MPs was not sufficient to cause obvious developmental toxicity, the impacts of MPs on thyroid hormones status might contribute to the aggravated join toxicity. The metabolomic mechanism was revealed to be that the coexposure of BHA and MPs affected the development of zebrafish larvae via disturbing the metabolism of arachidonic acid, glycerophospholipid, and lipids. Our results emphasized that MPs, even at the nontoxic concentrations, in combination with additives caused health risk that should not be ignored.

Keywords