Heliyon (Aug 2024)

Optimized neural network-based model to predict the shear strength of trapezoidal-corrugated steel webs

  • Mazen Shrif,
  • Samer Barakat,
  • Zaid Al-Sadoon,
  • Omar Mostafa,
  • Raghad Awad

Journal volume & issue
Vol. 10, no. 15
p. e35778

Abstract

Read online

Beam-like members use corrugated webs to increase their shear strength, stability, and efficiency. The corrugation positively affects the members' structural characteristics, especially those governed by the web parameters, such as the shear strength, while reducing the total weight. Existing code and analytical models for predicting the shear strength of trapezoidal corrugated steel webs (TCSWs) are summarized. This paper presents an optimized Artificial Neural Network (ANN)-based model to estimate the shear strength of steel girders with a TCSW subjected to a concentrated force. A database of 206 experimental results from the literature is used to feed the ANNs. Six geometrical and material parameters were identified as input variables, and the experimental shear strength at failure was considered the output variable. Four hyperparameter optimization techniques are applied to refine the ANN models: Bayesian Optimization (BO), Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS), Firefly Algorithm (FA), and African Buffalo Optimization (ABO). The performance metrics indicate that the ABO-ANN model is the most effective among these. The predictions of the developed ML model were also compared with those of existing code and analytical models. The comparisons illustrated that the ANN-based model outperforms the other existing models. The sensitivity analysis using the proposed ANN-based model captured the relationships and interactions among the geometric and material parameters and their impact on shear strength. One main finding is that the corrugation angle in the 35–45° range maximized the TCSW shear strength.

Keywords