PLoS ONE (Jan 2013)

Variability of inducible expression across the hematopoietic system of tetracycline transactivator transgenic mice.

  • Megumi Takiguchi,
  • Lukas E Dow,
  • Julia E Prier,
  • Catherine L Carmichael,
  • Benjamin T Kile,
  • Stephen J Turner,
  • Scott W Lowe,
  • David C S Huang,
  • Ross A Dickins

DOI
https://doi.org/10.1371/journal.pone.0054009
Journal volume & issue
Vol. 8, no. 1
p. e54009

Abstract

Read online

The tetracycline (tet)-regulated expression system allows for the inducible overexpression of protein-coding genes, or inducible gene knockdown based on expression of short hairpin RNAs (shRNAs). The system is widely used in mice, however it requires robust expression of a tet transactivator protein (tTA or rtTA) in the cell type of interest. Here we used an in vivo tet-regulated fluorescent reporter approach to characterise inducible gene/shRNA expression across a range of hematopoietic cell types of several commonly used transgenic tet transactivator mouse strains. We find that even in strains where the tet transactivator is expressed from a nominally ubiquitous promoter, the efficiency of tet-regulated expression can be highly variable between hematopoietic lineages and between differentiation stages within a lineage. In some cases tet-regulated reporter expression differs markedly between cells within a discrete, immunophenotypically defined population, suggesting mosaic transactivator expression. A recently developed CAG-rtTA3 transgenic mouse displays intense and efficient reporter expression in most blood cell types, establishing this strain as a highly effective tool for probing hematopoietic development and disease. These findings have important implications for interpreting tet-regulated hematopoietic phenotypes in mice, and identify mouse strains that provide optimal tet-regulated expression in particular hematopoietic progenitor cell types and mature blood lineages.