Complexity (Jan 2018)
Healthcare Operation Improvement Based on Simulation of Cooperative Resource Preservation Nets for None-Consumable Resources
Abstract
Healthcare systems are growing very fast, especially emergency departments (EDs) which constitute the major bottleneck of these complex concurrent systems. Emergency departments, where patients arrive without any prior notice, are considered real-time complex dynamic systems. Enhancing these systems requires tailored modeling techniques and a process optimization approach. A new mathematical approach is proposed in order to help multiple emergency units cooperate and share none-consumable resources to achieve the required flow. To achieve the cooperation, the process is modeled by a new subclass of Petri nets. The new Petri net model was proposed in a previous work and is used in this study in order to tackle the problem of modeling and managing these emergency units. The proposed Petri net is named Resource Preservation Net (RPN). Few theorems and lemmas are proposed to support the proposed Petri net model and to prove the correctness of cooperation and resource sharing. In this contribution, a model of cooperative healthcare units is proposed to achieve sound resource sharing and collaboration. The objective function of the proposed model is to improve the key performance indicators: patients length of stay (LoS), resource utilization rates, and patients waiting time. The cooperation among multiple EDs is then proposed through the study of merging two or more units. The cooperative and noncooperative behavior are also studied through theorems of soundness, separability and serializability, and a proof of scalability.