Incorporation of Locust Bean Gum and Solid Lipid Microparticles as Strategies to Improve the Properties and Stability of Calcium-Rich Soy Protein Isolate Gels
Thais C. Brito-Oliveira,
Ana Clara M. Cavini,
Leticia S. Ferreira,
Izabel C. F. Moraes,
Samantha C. Pinho
Affiliations
Thais C. Brito-Oliveira
Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, Brazil
Ana Clara M. Cavini
Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, Brazil
Leticia S. Ferreira
Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, Brazil
Izabel C. F. Moraes
Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, Brazil
Samantha C. Pinho
Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, Brazil
The present study aimed to investigate the properties of calcium-rich soy protein isolate (SPI) gels (14% SPI; 100 mM CaCl2), the effects of incorporating different concentrations locust bean gum (LBG) (0.1–0.3%, w/v) to the systems and the stability of the obtained gels. Also, the incorporation of solid lipid microparticles (SLMs) was tested as an alternative strategy to improve the system’s stability and, therefore, potential to be applied as a product prototype. The gels were evaluated regarding their visual aspect, rheological properties, water-holding capacities (WHCs) and microstructural organizations. The CaCl2-induced gels were self-supported but presented low WHC (40.0% ± 2.2) which was improved by LBG incorporation. The obtained mixed system, however, presented low stability, with high syneresis after 10 days of storage, due to microstructural compaction. The gels’ stability was improved by SLM incorporation, which decreased the gelled matrices’ compaction and syneresis for more than 20 days. Even though the rheological properties of the emulsion-filled gels (EFGs) were very altered due to the ageing process (which may affect the sensory perception of a future food originated from this EFG), the incorporation of SLMs increased the systems potential to be applied as a calcium-rich product prototype.