Nanotechnology Reviews (Jun 2022)

Spark plasma extrusion of binder free hydroxyapatite powder

  • Díaz-de-la-Torre Sebastián,
  • Muñoz-Juárez Isaac,
  • Méndez-García José C.,
  • González-Corral Gisela,
  • Casas-Luna Mariano,
  • Montufar Edgar B.,
  • Oliver-Urrutia Carolina,
  • Piña-Barba María Cristina,
  • Čelko Ladislav

DOI
https://doi.org/10.1515/ntrev-2022-0131
Journal volume & issue
Vol. 11, no. 1
pp. 2295 – 2303

Abstract

Read online

This work explores the possibility of manufacturing dense and nanocrystalline hydroxyapatite (HA) large monoliths by spark plasma extrusion (SPE). This method combines uniaxial mechanical compression, high temperature, and electromagnetic field to promote the extrusion and sintering of HA powder in one single step. The results show that the binder-free extrusion of pre-compacted HA powder is feasible at a temperature similar to the temperature at which nanocrystalline HA shows superplastic behavior. The extrusion continues throughout the sliding and rotation of the particles, and also due to the grain boundary sliding, up to the point where no more material is available, thus producing monoliths of nearly 30 mm in length and 10 mm in diameter. The dehydration and smooth surface of the powder appear as paramount factors to facilitate the HA extrusion without additives. The extruded HA preserved the stoichiometry and nanometric grain size and exhibited preferential microstructural alignment in the direction of extrusion. The material experiences local thermal and pressure gradients during extrusion, producing different densification and hardness along its length. The SPE of HA will benefit the healthcare field by offering new processing approaches of bone substitutes and osteosynthesis devices.

Keywords