Nuclear Fusion (Jan 2024)
Interfaces enhanced plasma irradiation resistance in CrMoTaWV/W multilayer films through blocking He diffusion
Abstract
The performance of plasma-facing materials (PFMs) is one of the key factors that significantly impact the stability of operation in fusion reactors. Herein, a new CrMoTaWV/W (high entropy alloy (HEA)/W) multilayer structure is designed as PFM to investigate its resistance to He plasma irradiation. It was observed that the introduction of the interfaces effectively absorbed plenty of He atoms, preventing them from diffusing into the material and delaying the formation of fuzz incubation zone, therefore, enhancing the resistance to plasma irradiation. The thickness transformed to fuzz in the HEA/W multilayer films was observed to be about two-thirds of those in the CrMoTaWV (HEA) film. Additionally, the fuzz growth rates in HEA/W multilayer films are lower than the average growth rate of bulk W and HEA films combined. These findings highlight a promising new avenue for the exploration of high-performance PFMs.
Keywords