Two Species with an Unusual Combination of Traits Dominate Responses of British Grasshoppers and Crickets to Environmental Change.

PLoS ONE. 2015;10(6):e0130488 DOI 10.1371/journal.pone.0130488

 

Journal Homepage

Journal Title: PLoS ONE

ISSN: 1932-6203 (Online)

Publisher: Public Library of Science (PLoS)

LCC Subject Category: Medicine | Science

Country of publisher: United States

Language of fulltext: English

Full-text formats available: PDF, HTML, XML

 

AUTHORS

Björn C Beckmann
Bethan V Purse
David B Roy
Helen E Roy
Peter G Sutton
Chris D Thomas

EDITORIAL INFORMATION

Peer review

Editorial Board

Instructions for authors

Time From Submission to Publication: 24 weeks

 

Abstract | Full Text

There are large variations in the responses of species to the environmental changes of recent decades, heightening interest in whether their traits may explain inter-specific differences in range expansions and contractions. Using a long-term distributional dataset, we calculated range changes of grasshoppers and crickets in Britain between the 1980s and the 2000s and assessed whether their traits (resource use, life history, dispersal ability, geographic location) explain relative performance of different species. Our analysis showed large changes in the distributions of some species, and we found a positive relationship between three traits and range change: ranges tended to increase for habitat generalists, species that oviposit in the vegetation above ground, and for those with a southerly distribution. These findings accord well with the nature of environmental changes over this period (climatic warming; reductions in the diversity and increases in the height of vegetation). However, the trait effects applied mainly to just two species, Conocephalus discolor and Metrioptera roeselii, which had shown the greatest range increases. Once they were omitted from the analysis, trait effects were no longer statistically significant. Previous studies on these two species emphasised wing-length dimorphism as the key to their success, resulting in a high phenotypic plasticity of dispersal and evolutionary-ecological feedback at their expanding range margins. This, combined with our results, suggests that an unusual combination of traits have enabled these two species to undertake extremely rapid responses to recent environmental changes. The fact that our results are dominated by two species only became apparent through cautious testing of the results' robustness, not through standard statistical checks. We conclude that trait-based analyses may contribute to the assessment of species responses to environmental change and provide insights into underlying mechanisms, but results need to be interpreted with caution and may have limited predictive power.