BMC Genomics (Mar 2019)
The identification of differentially expressed genes between extremes of placental efficiency in maternal line gilts on day 95 of gestation
Abstract
Abstract Background Placental efficiency (PE) describes the relationship between placental and fetal weights (fetal wt/placental wt). Within litters, PE can vary drastically, resulting in similarly sized pigs associated with differently sized placentas, up to a 25% weight difference. However, the mechanisms enabling the smaller placenta to grow a comparable littermate are unknown. To elucidate potential mechanisms, morphological measurements and gene expression profiles in placental and associated endometrial tissues of high PE and low PE feto-placental units were compared. Tissue samples were obtained from eight maternal line gilts during gestational day 95 ovario-hysterectomies. RNA was extracted from tissues of feto-placental units with the highest and lowest PE in each litter and sequenced. Results Morphological measurements, except placental weight, were not different (P > 0.05) between high and low PE. No DEG were identified in the endometrium and 214 DEG were identified in the placenta (FDR < 0.1), of which 48% were upregulated and 52% were downregulated. Gene ontology (GO) analysis revealed that a large percentage of DEG were involved in catalytic activity, binding, transporter activity, metabolism, biological regulation, and localization. Four GO terms were enriched in the upregulated genes and no terms were enriched in the downregulated genes (FDR < 0.05). Eight statistically significant correlations (P < 0.05) were identified between the morphological measurements and DEG. Conclusion Morphological measures between high and low PE verified comparisons were of similarly sized pigs grown on different sized placentas, and indicated that any negative effects of a reduced placental size on fetal growth were not evident by day 95. The identification of DEG in the placenta, but absence of DEG in the endometrium confirmed that the placenta responds to the fetus. The GO analyses provided evidence that extremes of PE are differentially regulated, affecting components of placental transport capacity like nutrient transport and blood flow. However, alternative GO terms were identified, indicating the complexity of the relationship between placental and fetal weights. These findings support the use of PE as a marker of placental function and provide novel insight into the genetic control of PE, but further research is required to make PE production applicable.
Keywords