Stem Cell Research & Therapy (Jan 2022)

Dendrimer-modified gelatin methacrylate hydrogels carrying adipose-derived stromal/stem cells promote cartilage regeneration

  • Fengyi Liu,
  • Xu Wang,
  • Yuzhou Li,
  • Mingxing Ren,
  • Ping He,
  • Lu Wang,
  • Jie Xu,
  • Sheng Yang,
  • Ping Ji

DOI
https://doi.org/10.1186/s13287-022-02705-6
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Cartilage defects pose a significant burden on medical treatment, leading to an urgent need to develop regenerative medicine approaches for cartilage repair, such as stem cell therapy. However, the direct injection of stem cells can result in insufficient delivery or inaccurate differentiation. Hence, it is necessary to choose appropriate stem cell delivery scaffolds with high biocompatibility, injectability and chondral differentiation induction ability for cartilage regeneration. Methods In this study, the photocrosslinked gelatin methacrylate (GelMA) hydrogel with high cell affinity and plasticity was selected and strengthened by incorporating methacrylic anhydride-modified poly(amidoamine) (PAMAM-MA) to fabricate an adipose-derived stromal/stem cells (ASCs) delivery scaffold for cartilage repair. The physiochemical properties of the GelMA/PAMAM-MA hydrogel, including the internal structure, stability and mechanical properties, were tested. Then, ASCs were encapsulated into the hydrogels to determine the in vitro and in vivo chondrogenic differentiation induction abilities of the GelMA/PAMAM-MA hydrogel. Results Compared with the GelMA hydrogel, the GelMA/PAMAM-MA hydrogel exhibited more uniform structure, stability and mechanical properties. Moreover, on the basis of good biocompatibility, the hybrid hydrogel was proven to exert a sufficient ability to promote cartilage regeneration by in vitro three-dimensional (3D) culture of rASCs and in vivo articular cartilage defect repair. Conclusions The injectable photocrosslinked GelMA/PAMAM-MA hydrogel was proven to be a capable stem cell carrier for cartilage repair and provides new insight into the design strategy of stem cell delivery scaffolds.

Keywords