Учёные записки Казанского университета: Серия Физико-математические науки (Jun 2018)

Explicit formulas for chromatic polynomials of some series-parallel graphs

  • E.Yu. Lerner,
  • S.A. Mukhamedjanova

Journal volume & issue
Vol. 160, no. 2
pp. 339 – 349

Abstract

Read online

The main goal of our paper is to present explicit formulas for chromatic polynomials of some planar series-parallel graphs (sp-graphs). The necklace-graph considered in this paper is the simplest non-trivial sp-graph. We have provided the explicit formula for calculating the chromatic polynomial of common sp-graphs. In addition, we have presented the explicit formulas for calculating chromatic polynomials of the ring of the necklace graph and the necklace of the necklace graph. Chromatic polynomials of the necklace graph and the ring of the necklace graph have been initially obtained by transition to the dual graph and the subsequent using of the flow polynomial. We have also used the technique of finite Fourier transformations. The use of the partition function of the Potts model is a more general way to evaluate chromatic polynomials. In this method, we have used the parallel- and series-reduction identities that were introduced by A. Sokal. We have developed this idea and introduced the transformation of the necklace-graph reduction. Using this transformation makes it easier to calculate chromatic polynomials for the necklace-graph, the ring of the necklace graph, as well as allows to calculate the chromatic polynomial of the necklace of the necklace graph.

Keywords