Designs (May 2024)
Introduction of Hybrid Additive Manufacturing for Producing Multi-Material Artificial Organs for Education and In Vitro Testing
Abstract
The evolution of 3D printing has ushered in accessibility and cost-effectiveness, spanning various industries including biomedical engineering, education, and microfluidics. In biomedical engineering, it encompasses bioprinting tissues, producing prosthetics, porous metal orthopedic implants, and facilitating educational models. Hybrid Additive Manufacturing approaches and, more specifically, the integration of Fused Deposition Modeling (FDM) with bio-inkjet printing offers the advantages of improved accuracy, structural support, and controlled geometry, yet challenges persist in cell survival, interaction, and nutrient delivery within printed structures. The goal of this study was to develop and present a low-cost way to produce physical phantoms of human organs that could be used for research and training, bridging the gap between the use of highly detailed computational phantoms and real-life clinical applications. To this purpose, this study utilized anonymized clinical Computed Tomography (CT) data to create a liver physical model using the Creality Ender-3 printer. Polylactic Acid (PLA), Polyvinyl Alcohol (PVA), and light-bodied silicone (Polysiloxane) materials were employed for printing the liver including its veins and arteries. In brief, PLA was used to create a mold of a liver to be filled with biocompatible light-bodied silicone. Molds of the veins and arteries were printed using PVA and then inserted in the liver model to create empty channel. In addition, the PVA was then washed out by the final product using warm water. Despite minor imperfections due to the printer’s limitations, the final product imitates the computational model accurately enough. Precision adjustments in the design phase compensated for this variation. The proposed novel low-cost 3D printing methodology successfully produced an anatomically accurate liver physical model, presenting promising applications in medical education, research, and surgical planning. Notably, its implications extend to medical training, personalized medicine, and organ transplantation. The technology’s potential includes injection training for medical professionals, personalized anthropomorphic phantoms for radiation therapy, and the future prospect of creating functional living organs for organ transplantation, albeit requiring significant interdisciplinary collaboration and financial investment. This technique, while showcasing immense potential in biomedical applications, requires further advancements and interdisciplinary cooperation for its optimal utilization in revolutionizing medical science and benefiting patient healthcare.
Keywords