PLoS ONE (Jan 2024)

Improved U-net network asphalt pavement crack detection method.

  • Qiong Zhang,
  • Shanshan Chen,
  • Yue Wu,
  • Zhonghang Ji,
  • Fei Yan,
  • Shiling Huang,
  • Yunqing Liu

DOI
https://doi.org/10.1371/journal.pone.0300679
Journal volume & issue
Vol. 19, no. 5
p. e0300679

Abstract

Read online

Road crack detection is one of the important parts of road safety detection. Aiming at the problems such as weak segmentation effect of basic U-Net on pavement crack, insufficient precision of crack contour segmentation, difficult to identify narrow crack and low segmentation accuracy, this paper proposes an improved U-net network pavement crack segmentation method. VGG16 and Up_Conv (Upsampling Convolution) modules are introduced as backbone network and feature enhancement network respectively, and the more abstract features in the image are extracted by using the Block depth separable convolution blocks, and the multi-scale features are captured and enhanced by higher level semantic information to improve the recognition accuracy of narrow cracks in the road surface. The improved network embedded the Ca(Channel Attention) attention mechanism in U-net's jump connection to enhance the crack portion to suppress background noise. At the same time, DG_Conv(Depthwise GSConv Convolution) module and UnetUp(Unet Upsampling) module are added in the decoding part to extract richer features through more convolutional layers in the network, so that the model pays more attention to the detailed part of the crack, so the segmentation accuracy can be improved. In order to verify the model's ability to detect cracks in complex backgrounds, experiments were carried out on CFD and Deepcrack datasets. The experimental results show that compared with the traditional U-net network F1-score and mIoU have increased by 13.6% and 9.9% respectively. Superior to advanced models such as U-net, Segnet and Linknet in accuracy and generalization ability, the improved model provides a new method for asphalt pavement crack detection. The model is more conducive to practical application and ground deployment, and can be applied in road maintenance projects.